Search results for "Crystal symmetry"
showing 4 items of 4 documents
Indium Doping in Barium Cerate: the Relation between Local Symmetry and the Formation and Mobility of Protonic Defects
2007
The solid solution series Ba(In,Ce)O3-ä has been investigated with respect to structure, formation, and mobility of protonic defects. Compared to the limited solubility of Y2O3 in BaCeO3 and BaZrO3, the complete solubility of In2O3 is suggested to reflect a relation between absolute hardness of the dopant and the ease of insertion into the hosting lattices. Extended X-ray absorption fine structure (EXAFS) was used to probe the local environment of In3+ in barium cerate: in the surroundings of the dopant, the orthorhombic structure is strongly modified, resulting in an increase of local symmetry. The InO6 octahedra are very regular, and there is no indication for any defect clustering. This …
Electric control of the spin Hall effect by intervalley transitions
2013
Controlling spin-related material properties by electronic means is a key step towards future spintronic technologies. The spin Hall effect (SHE) has become increasingly important for generating, detecting and using spin currents, but its strength-quantified in terms of the SHE angle-is ultimately fixed by the magnitude of the spin-orbit coupling (SOC) present for any given material system. However, if the electrons generating the SHE can be controlled by populating different areas (valleys) of the electronic structure with different SOC characteristic the SHE angle can be tuned directly within a single sample. Here we report the manipulation of the SHE in bulk GaAs at room temperature by m…
Electronic properties of graphene: A learning path for undergraduate students
2016
The purpose of this work is to present a learning path aimed at deepening student understanding of the fundamental concepts underlying the electronic properties of new materials, graphene in particular. To achieve this task, we propose a five-week long workshop where students may be introduced to fundamental concepts of advanced physics, rarely used in learning paths, such as the symmetry properties of the crystal lattice, the group theory , the features of the free electron wave functions and energy levels, the relativistic Dirac equation. Particular emphasis is given to the manner of introducing these concepts, since an essential knowledge of solid state physics, quantum physics and relat…
Negative pressures in CaWO4 nanocrystals
2009
Tetragonal scheelite-type CaWO4 nanocrystals recently prepared by a hydrothermal method show an enhancement of its structural symmetry with the decrease in nanocrystal size. The analysis of the volume dependence of the structural parameters in CaWO4 nanocrystals with the help of ab initio total-energy calculations shows that the enhancement of the symmetry in the scheelite-type nanocrystals is a consequence of the negative pressure exerted on the nanocrystals; i.e., the nanocrystals are under tension. Besides, the behavior of the structural parameters in CaWO4 nanocrystals for sizes below 10 nm suggests an onset of a scheelite-to-zircon phase transformation in good agreement with the predic…